
Improving WaveRNN with Heuristic Dynamic Blending for Fast and
High-Quality GPU Vocoding

Muyang Du1, Chuan Liu1, Jiaxing Qi1, Junjie Lai1

1NVIDIA Corporation
{myrond,riverl,jqi,julienl}@nvidia.com

Abstract
Auto-regressive vocoders are typically less efficient at in-

ference due to their serial nature, making it difficult to fully uti-
lize graphics processing units (GPUs). In this context, batched
inference with upsampled feature folding can be used to speed
up vocoding. However, speech quality degradation caused by
blending folded waveform segments making it hard to be ap-
plied to production. To address this issue, we propose a novel
blending approach called heuristic dynamic blending (HDB),
which effectively addresses the voice trembling and echo arti-
facts of conventional static blending. We also propose a par-
allel algorithm of HDB running on GPUs, which significantly
reduces the additional time overhead introduced by the naive
HDB algorithm. Experimental results demonstrate that using a
multi-band WaveRNN with HDB can effectively improve par-
allelism for real-time GPU vocoding while maintaining high
speech quality comparable to non-folding inference.
Index Terms: neural vocoder, speech synthesis, real-time,
high-quality, WaveRNN, GPU vocoding.

1. Introduction
In recent years, neural network-based approaches have been
widely applied to speech synthesis tasks such as text-to-speech
(TTS) and voice cloning and have seen extraordinary success.
The acoustic model[1, 2, 3] and vocoder are two essential com-
ponents of these tasks. Among them, vocoder converts acoustic
features, such as mel-spectrogram, generated by the acoustic
model into waveform samples. There are two main types of
neural network-based vocoders: autoregressive vocoders (AR),
such as Conv-based WaveNet[4] and RNN-based WaveRNN[5],
LPCNet[6], and non-autoregressive vocoders (Non-AR), such
as Flow-based WaveGlow[7], GAN-based MelGAN[8], HiFi-
GAN[9], and Diffusion-based DiffWave[10], WaveGrad[11].

AR vocoder typically requires upsampling the acoustic fea-
ture to the same resolution as the waveform and then generating
one sample in each auto-regressive iteration based on the con-
ditioning features and previously generated samples. In con-
trast, Non-AR vocoders such as HiFi-GAN perform a fully par-
allel conversion utilizing a stack of upsampling and convolu-
tion blocks. Benefiting from the natural property of Non-AR
vocoders, it can fully use the computing capability of GPUs to
achieve ultra-fast vocoding. However, Non-AR vocoders con-
sume significantly more time and computational cost for train-
ing and have higher quality requirements for acoustic features.
AR vocoders are easier to train and more robust to the imper-
fect synthetic acoustic features because of the randomness intro-
duced by the sampling, but they are less efficient at inference.

Several methods have been proposed to speed up the vocod-
ing of AR vocoders, such as synthesizing multiple sub-band
samples[12, 13] (the multi-band strategy), synthesizing multi-
ple consecutive samples simultaneously at each iteration[14],

and sparsifying[15, 16] the model weights to reduce computa-
tional costs. However, these approaches still maintain the serial
nature of the entire acoustic feature vocoding process, making it
difficult to fully utilize GPUs. To further improve parallelism,
a simple but effective approach is folding the upsampled con-
ditioning features into multiple feature segments for batched
vocoding and then blending the overlap area of waveform seg-
ments to get the final waveform. However, this approach suffers
from observable quality degradation with the conventional static
blending algorithm. In this paper, we propose a novel blending
approach to improve the synthetic quality of folding inference
to make it fully applicable for production. The main contribu-
tions are summarized as follows:

• We propose a novel blending algorithm called heuristic
dynamic blending (HDB) for batched inference with fea-
ture folding, which effectively addresses the voice trem-
bling and echo artifacts of the traditional static blending.

• We further propose a parallel algorithm of HDB running
on GPUs, which significantly reduces the additional time
overhead introduced by the naive HDB algorithm.

• We conduct multiple experiments to assess the effects of
different blending and model configurations on speech
quality. Results demonstrate that using a multi-band Wa-
veRNN with HDB can vocode in real-time with speech
quality comparable to non-folding inference.

2. Related Work
2.1. Multi-Band WaveRNN with µ-law Companding

Figure 1 presents the multi-band WaveRNN used to demon-
strate our proposal. It contains an upsampling network and an
iterative network. The upsampling network U takes frame-rate
acoustic features as input and produces sub-band sample-rate
conditional features for the iterative network. U generates both
the upsampled Mel feature with a stack of upsample (nearest
interpolation + convolution) blocks, and the upsampled supple-
mentary feature with a stack of residual blocks[17] followed by
one single interpolation layer. The iterative network I contains
a pre-linear layer, two stacked GRU[18] layers, three post-linear
layers, and a final sampling layer to auto-regressively gener-
ate 9-bit µ-law[19] quantized sub-band samples extracted by
Pseudo-QMF (PQMF)[20] analysis. In each iteration, I gen-
erates B sub-band samples simultaneously from a multinomial
distribution.

During training, a fixed-length Mel fragment M and its cor-
responding quantized sub-band signal fragment y are used to
jointly optimize the U and I using cross entropy as the objec-
tive function, as shown in the following equation:

min
θ,δ

−
N∑

n=1

B∑

b=1

C∑

c=1

yn,b,c log(I(U(M ; θ); δ)n,b,c) (1)

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

4344 10.21437/Interspeech.2023-690

Features

Upsampled
Feature Folding

Blending

PQMF

GRU 1

Post-Linear 1

Sampling

Pre-Linear

GRU 2

Post-Linear 2

Post-Linear 3

sb=1
t sb=2

t

… sb=8
t

Inference

sb=1
t-1 s

b=2
t-1
…sb=8

t-1

Train

Residual
Block

Residual
Block

Residual
Block

Repeat

Conv

Repeat

Conv

Repeat

Conv

Repeat

Inverse µ-law

Upsampled Feature

Feature Segment Batch

Feature Folding

PQMF & Blending

Sub-Band Signal
Segment Batch

Full-Band Signal
Segment Batch

PQMF
 Filter
Banks

Full-Band Signal

Fade-Out Fade-In
Hanning
Window

Figure 1: Overview of the Multi-Band WaveRNN with µ-law,
upsampled feature folding, and signal segments blending.

where θ and δ are the trainable parameters of the upsam-
pling network and iterative network, respectively. C denotes the
number of classes for sampling, which is set to 512 for the 9-bit
output. B represents the number of sub-bands, and N indicates
the length of the sub-band signal fragment used for training.

3. Method
3.1. Batched Inference by Feature Folding

As shown in Figure 1, a simple approach to improve vocod-
ing parallelism is to fold the upsampled features into multiple
segments of the same length (a feature segment batch), then
perform batched auto-regression on the iterative network. For
simplicity, we refer to this approach as the folding inference.
During folding, an overlap area is required between adjacent
segments. Once the auto-regression, inverse µ-law, and PQMF
synthesis are complete, the full-band signal segments are recov-
ered to the complete signal by blending the reserved overlap ar-
eas. With folding applied, the number of vocoding iterations is
no longer related to the length of the upsampled feature but de-
pends solely on the configurable segment length. This can sig-
nificantly reduce the real-time factor on GPU, especially when
synthesizing audio with a long duration.

3.2. Conventional Static Blending and Limitations

Define the segment length and the overlap length used for fold-
ing the upsampled feature as ŜL and ÔL (with the requirement
of 2ÔL ≤ ŜL). A straightforward approach is to use the same
overlap for blending as for folding, which we call it as the static
blending. Note that we apply blending to the full-band signal
segments after PQMF synthesis, so the segment and overlap
length for blending are SL (= ŜL ·B) and OL (= ÔL ·B), re-
spectively. To avoid audible discontinuities in the overlap area
after blending, we use the Hanning window to generate coeffi-
cients for fade-in α and fade-out β as:

w[j] =
1

2

[
1− cos

(
2πj

2OL− 1

)]
, j ∈ [0, 2OL)

α = (w[j]) 0≤i≤OL, β = (w[j]) OL≤j<2OL

(2)

Then the full-band signal segment Si and Si+1 is blended as:

Si+1,j = βj ∗ Si,−OL+j + αj ∗ Si+1,j , j ∈ [0, OL) (3)

According to our observations, static blending can effectively
reduce the appearance of crackling noise in the overlap area
when ÔL is set at a sufficient length. However, we notice that
audio constructed using static blending has observable voice
trembling and echo artifacts. These artifacts can become more
noticeable when synthesizing higher sample-rate audio. We
attribute these problems to misalignment in the overlap area
of two adjacent segments. In other words, the overlap area
(Si+1,j)0≤j≤OL is either a time-advanced or time-delayed ver-
sion of (Si,j)−OL≤j≤−1. This is due to the superposition of:
1. the inaccurate calculation of the GRU states without long-
term past dependencies after folding, and 2. the randomness
introduced by multinomial sampling. While increasing ÔL can
alleviate voice trembling, it makes the echo artifact more no-
ticeable and reduces the ratio of valid payload in each segment.

3.3. Heuristic Dynamic Blending

To address the limitations of static blending, we propose a novel
approach called heuristic dynamic blending (HDB) that blends
adjacent segments using a dynamic overlap length. We de-
fine our proposal as a heuristic algorithm because it only pro-
duces locally optimal overlap, but experiments have shown it
can effectively solve the artifacts of voice trembling and echo.
This makes HDB a simple and effective solution for improving
the parallelism of auto-regressive vocoders such as WaveRNN
while maintaining high audio quality.
■ Naive Implementation (Algorithm 1). Based on the over-
lap length OL used in static blending, we take a fraction of OL
as OF , which is used to define the search range Z of dynamic
overlap as [OL−OF,OL+OF] for blending. As illustrated in
Algorithm 1, W is the output waveform. For each adjacent seg-
ment pair Si and Si+1 in the segment batch, we first compute
the Manhattan distance [21] for each dynamic overlap length j
as Distj , j ∈ Z. Then we divide Distj by j to get the mean
sample distance ¯Distj . Finally, we obtain the locally optimal
dynamic overlap as OLD

i,i+1 by minimizing ¯Distj to blend the
tail OLD

i,i+1 samples of Si with the head OLD
i,i+1 samples of

Si+1 (step 9), followed by replacing the tail OLD
i,i+1 samples

of W with the head OLD
i,i+1 samples of Si+1 (step 10), and

appending the remaining samples of Si+1 to the end of W (step
11). The computation complexity C of HDB is primarily due to
the calculation of the Manhattan distance, as given by:

C = (NS − 1) · (2 ·OF + 1) · SL (4)

where NS is the number of segments. As shown above,
HDB incurs additional computational complexity that grows
linearly with the number of segments. To address this, we
propose a parallel implementation (Algorithm 2) to accelerate
HDB on the GPUs. This allows HDB to take advantage of the
GPU’s parallel computing capabilities, significantly reducing
the overall computation time and improving performance.
■ Parallel Implementation (Algorithm 2). As shown in Fig-
ure 3, we first parallelize the calculation of the Manhattan dis-
tance for the dynamic overlaps between two adjacent segments.
Define two matrices A and B. We initialize each row of A
with the last OL + OF + 1 samples (Si,j)−OL−OF−1≤j≤−1

of segment i and each row of B with the first OL + OF + 1
samples (Si+1,j)0≤j≤OL+OF of segment i + 1. We then roll
the elements in the kth row of B by k units to the right (Row-
WiseRoll), followed by subtracting B from A and computing
the element-wise absolute (f) of the difference matrix Dists.
Next, we apply a pregenerated mask M to the Dists. The last

4345

Si,-1Si,-OL-OF-1 Si,-OL-OF Si,-OL-OF+1 Si,-2Si,-3…

Si,-1Si,-OL-OF-1 Si,-OL-OF Si,-OL-OF+1 Si,-2Si,-3…

Si,-1Si,-OL-OF-1 Si,-OL-OF Si,-OL-OF+1 Si,-2Si,-3…

Si,-1Si,-OL-OF-1 Si,-OL-OF Si,-OL-OF+1 Si,-2Si,-3…

Si,-1Si,-OL-OF-1 Si,-OL-OF Si,-OL-OF+1 Si,-2Si,-3…

-

Si+1,OL-OF

Si+1,OL+OF

Si+1,OL

Si+1,OL+OF-1

Si+1,OL-OF+1

……

…

…

Si+1,0

Si+1,OL+OF-1

Si+1,OL+OF-2

Si+1,OL-1

Si+1,OL-OF

Si+1,OL-OF-1

Si+1,0

Si+1,1Si+1,0

Si+1,0

Si+1,0…

…

Si+1,1

Si+1,1

Si+1,1

… …

Si+1,2

Si+1,2 Si+1,3

Si+1,2 Si+1,3 Si+1,4

Si+1,-1

Si+1,-OF

Si+1,-2OF

Si+1,-2OF+1

…

Si+1,-1

…

Si+1,-1Si+1,-2… …

…………

…………
…… … … …

… … … … …

… …1 1 1 1 1 1

0 1 1 1 1 1…

0 0 0 1 1 1…

0 0 0 0 1 1

0 0 0 0 0 1

…

1

1

1

1

1

…

…

…

……
…… … … … … …

…… … … … … …

⊙

Figure 2: Parallel approach to calculate the Manhattan distance of different overlap lengths between two adjacent signal segments.

Algorithm 1 Naive Implementation of HDB.
Input: S, SL, OL, OF
Output: W
1: W ← S0

2: for 0 ≤ i < NS do
3: Dists← []
4: for OL−OF ≤ j ≤ OL+OF do
5: Distj = Manhattan(tail(Si, j), head(Si+1, j))
6: ¯Distj ← Dj ÷ j
7: add ¯Distj to Dists

8: OLD
i,i+1 = argmin(Dists) +OL−OF

9: Si+1 ← blend(Si, Si+1, OLD
i,i+1)

10: tail(W,OLD
i,i+1)← head(Si+1, OLD

i,i+1)

11: W
+← tail(Si+1, SL−OLD

i,i+1)

12: return W

Algorithm 2 Parallel Implementation of HDB.
Input: S, SL, OL, OF , M ▷ Shape of S: (NS , SL)
Output: W
1: W ← S[0, :]
2: A← S[: −1,−OL−OF − 1 :], B← S[1 :, : OL+OF + 1]
3: A← A.unsqueeze(1).repeat(1, 2 ∗OF + 1, 1)
4: B← B.unsqueeze(1).repeat(1, 2 ∗OF + 1, 1)
5: B← RowWiseRoll(B, axis = 2)
6: Dists← f(A− B)⊙M
7: ¯Dists← sum(Dists, axis = 2)⊘ sum(M, axis = 2)
8: OLD ← OL+OF − argmin(¯Dists, axis = 1)− 1
9: for 0 ≤ i < NS do

10: Same as step 9, 10, 11 of the naive implementation.
11: return W

2OF +1− i elements of row i in M are set to 1, indicating the
valid difference values. After that, we calculate the mean value
of the k-th row as the mean sample difference for the dynamic
overlap OL+OF −k. Finally, we can obtain OLD

i,i+1 by find-
ing the row index of ¯Dists with the minimum mean sample
difference. Based on the process above, the obtaining of local
optimal dynamic overlaps OLD of the entire segment batch S
can be further fully parallelized on GPU by batched processing,
as illustrated in Algorithm 2 in PyTorch-style pseudo-code.

4. Experiments
4.1. Experimental Setup

Dataset. The LJSpeech[22] dataset is used for training and
evaluation. It contains 13,100 22.05kHz audio clips of a single
female speaker and has a total of 24 hours. In our experiments,
100 randomly selected audio clips are reserved for evaluation.
Acoustic Specifications. The mel spectrogram with 80 bins
is used as the input feature of the upsampling network. It is ex-
tracted with an FFT size of 1024, a hop length of 256, and a win-
dow length of 1024 from the normalized waveform. For faster

and more stable convergence, we normalize mel to a symmetric
interval of -4 to 4. In order to better evaluate the improvement
of the proposal on models with different number of sub-bands
B, we train two multi-band models (4-band and 8-band). To
minimize the PQMF reconstruction error, the cutoff ratio is set
to 0.142, 0.079 for 4, 8 sub-bands, respectively.
Model Architecture. For the upsampling network, different
upsample factors are used for the 4-band and 8-band models.
Specifically, upsample factors of 64 (B=4), 128 (B=8) are used
in the interpolation layer after the residual blocks and upsample
factors of [4,4,4] (B=4), [4,4,8] (B=8) are used in the interpo-
lation layer inside the upsample blocks. There are 10 residual
blocks and each block contains two 1D convolutions with kernel
size 1 and in/out channels 128 followed by batch normalization.
The convolutions in upsample blocks have a in/out channel of
1 and kernel sizes of [9,9,9] (B=4), [9,9,17] (B=8). As for the
iterative network, all the GRU layers and linear layers have 512
hidden units, except for the last linear layer, which has 2048
units (B=4), and 4096 units (B=8).
Training & Evaluation. The models are trained using the
Adam optimizer[23], with a initial learning rate of 1e-4 and a
batch size of 32. Training is done on a NVIDIA Tesla V100
GPU, using single precision and gradient clipping[24] to en-
sure stability. Performance evaluation is done on the same
GPU with Intel Xeon E5-2698 v4 CPU. As for speech quality,
we evaluate using objective and subjective measures, includ-
ing the Perceptual Evaluation of Speech Quality (PESQ)[25],
Narrow-Band PESQ (NBPESQ), Short-time Objective Intelli-
gibility (STOI)[26] and Mean Opinion Score (MOS). The MOS
results are gathered by having 10 outsourced online listeners
score 20 evaluation audio samples from 1 to 5 for each config-
uration. Audio samples can be found on our GitHub page1.

Table 1: Quality comparison of WaveRNN models with different
numbers of sub-bands and different blending algorithms.

Model Blend PESQ NBPESQ STOI RTF

MB-4 - 3.869 3.858 0.649 7.53
MB-4-F S 3.481 3.653 0.646 0.22
MB-4-F D 3.767 3.812 0.656 0.22

MB-8 - 3.842 3.839 0.647 3.87
MB-8-F S 3.617 3.729 0.646 0.22
MB-8-F D 3.758 3.815 0.651 0.22

4.2. Discussion

4.2.1. Objective Evaluation

Table 1 shows the objective speech quality scores of the multi-
band (MB) models with 4 and 8 sub-bands under different
blending algorithms. The suffix F denotes folding inference, S

1http://muyangdu.github.io/WaveRNN-Heuristic-Dynamic-Blending/

4346

A B

C D

2.6

2.8

3

3.2

3.4

3.6

3.8

100 90 80 70 60 50 40 30 20 10

P
ES

Q

OVERLAP OL

D-SL-1000 S-SL-1000

D-SL-500 S-SL-500

2.2

2.6

3

3.4

3.8

1
0

0
0

9
0

0

8
0

0

7
0

0

6
0

0

5
0

0

4
0

0

3
0

0

2
0

0

1
0

0

P
ES

Q

SEGMENT SL

D-OL-50 S-OL-50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

20 60 100 140 180 220 260 300

TI
M

E
C

O
ST

 (
s)

NUM SEGMENTS

Parallel Naïve

0.1 0.15 0.2 0.25

1000

900

800

700

600

500

RTF

SE
G

M
EN

T

RTF-D-Naïve RTF-D-Parallel RTF-S

Figure 3: A. PESQ of ŜL 1000, 500, and ÔL varies from 100 to
10. B. PESQ of ÔL 50 and ŜL varies from 1000 to 100. C. The
time cost of the Parallel and Naive Dynamic Blending. D. RTF
of the Static, Parallel Dynamic, and Naive Dynamic Blending.

denotes static blending, and D denotes heuristic dynamic blend-
ing. The ŜL is set to 1000 for all the models to ensure that
their iterative network loops the same number of vocoding iter-
ations to obtain similar RTFs, while the ÔL for folding is set
to 100 and 50 for the 4-band and 8-band models, respectively,
to ensure that they apply the same OL for blending. In all the
configurations, 10% of the OL is used as the OF . For non-
folding inference, both the 4-band and 8-band models can gen-
erate high-quality speech with similar scores in all three quality
metrics. However, their RTFs on the test set are far from real-
time. In contrast, if folding is applied with static blending, we
can achieve ∼ 4× real-time but also incur a quality degrada-
tion. The drop is particularly noticeable in the 4-band (10.0% ↓
in PESQ) model as it have more folding segments compared to
the 8-band (5.9% ↓ in PESQ) model when using the same ŜL
for similar RTF. Similar drop can also be observed in NBPESQ.

If folding is applied with HDB, we observe a significant
rebound in speech quality for both models. With HDB, the 4-
band can achieves similar scores as the 8-band model and their
PESQs only decrease by 2.6% and 2.2%, respectively, com-
pared to non-folding synthesis. It is worth noting that HDB
achieves even higher STOI than non-folding synthesis. STOI is
proposed to evaluate the intelligibility of degraded speech sig-
nals (e.g., noise reduction). A higher STOI indicates a cleaner
vocoded audio. We attribute this observation to the gap between
training and non-folding inference. During training, the model
is optimized using fixed-length audio fragments, but it is used
to vocode arbitrary-length signals during non-folding inference.
This gap can lead to the accumulated error in the GRU states
that cause the iterative network to generate noisy samples when
the inference signal length exceeds the length of the training
fragment. In comparison, folding inference naturally bridge this
gap by using a fixed-length short segment.

To further investigate the effect of segment and overlap
length on sound quality, we conduct experiments using different
ŜL and ÔL on the 8-band model. Figure 3 A shows the change
in PESQ for ŜL values of 1000 and 500, with ÔL ranging from
100 to 10. In general, HDB has a higher PESQ than static blend-
ing. It can be observed that the PESQ of static blending begins

to decrease when ÔL < 50, while HDB can still maintain a
high PESQ at ÔL = 40. Furthermore, we study the variation
of PESQ when ÔL is fixed at 50 and ŜL ranging from 1000
to 100, as shown in Figure 3 B. The score for static blending
shows a drop at ŜL = 800 and a second drop when ŜL < 500.
In contrast, HDB maintains a stable PESQ when ŜL > 400.

To evaluate the performance of the parallel algorithm of
our proposal, we measure the time consumption of parallel and
naive algorithm under different NS with ÔL = 50, as shown in
Figure 3 C. It can be observed that the parallel algorithm uses
less than half of the blending time compared with the naive al-
gorithm, which is especially important when NS is high. Figure
3 D shows the average RTF of all the blending algorithm on the
test set under various ŜL. It can be confirmed that the parallel
algorithm running on GPU achieves similar RTF as the static
blending. With ŜL ranging from 1000 to 500, folding infer-
ence can achieve ∼ 4.5× to 8.3× real-time on the test set.

4.2.2. Subjective Evaluation

Table 2: MOS with 95% Confidence Intervals

Model Blend 1000 # 50 500 # 50

MB-8-F D 4.05 ± 0.06 3.89 ± 0.06
MB-8-F S 3.73 ± 0.07 3.31 ± 0.07

Model Blend 1000 # 100 500 # 100

MB-8-F D 4.17 ± 0.05 4.02 ± 0.06
MB-8-F S 3.90 ± 0.07 3.45 ± 0.07

MB-8 - 4.21 ± 0.05

GT - 4.62 ± 0.05

We conduct listening tests on the 8-band model to evaluate
the MOS of speech audio synthesized using folding inference
with both static blending (S) and heuristic dynamic blending
(D), and compare them to those of non-folding inference and
ground truth (GT). The tests were conducted using ŜL 1000,
500 and ÔL 100, 50 (ŜL # ÔL). The results, shown in Table 2,
indicate that HDB generally achieves a higher score compared
to static blending. Increasing ÔL from 50 to 100 can lead to
a noticeable improvement for both static blending and HDB.
When ŜL is set to 1000, HDB can synthesize speech with a
quality comparable to non-folding inference.

Additionally, we find that when ŜL is set to 100 for a lower
RTF, HDB is still able to produce speech of acceptable qual-
ity while static blending suffers from severe quality degradation
(please refer to the audio samples1). Subjective results further
demonstrate that HDB offers practitioners more flexibility in
balancing the trade-off between RTF and quality.

5. Conclusions
In this work, we propose a novel blending approach called
heuristic dynamic blending (HDB) for WaveRNN batched in-
ference with feature folding, which effectively addresses the
voice trembling and echo artifacts of static blending. Further-
more, we propose a parallel implementation of HDB running on
GPUs to reduce the additional time overhead introduced by the
naive HDB. Experimental results demonstrate the effectiveness
of the proposed approach, achieving real-time GPU vocoding
with speech quality comparable to non-folding vocoding.

4347

6. References
[1] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,

Z. Chen, Y. Zhang, Y. Wang, R. Ryan, R. A. Saurous, Y. Agiomyr-
giannakis, and Y. Wu, “Natural TTS synthesis by conditioning
wavenet on MEL spectrogram predictions,” in 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing,
ICASSP 2018, Calgary, AB, Canada, April 15-20, 2018. IEEE,
2018, pp. 4779–4783.

[2] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T. Liu,
“Fastspeech 2: Fast and high-quality end-to-end text to speech,” in
9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021.

[3] A. Łańcucki, “Fastpitch: Parallel text-to-speech with pitch pre-
diction,” in ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2021, pp. 6588–6592.

[4] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio, corr, vol.
abs/1609.03499,” 2017.

[5] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury,
N. Casagrande, E. Lockhart, F. Stimberg, A. van den Oord,
S. Dieleman, and K. Kavukcuoglu, “Efficient neural audio syn-
thesis,” in Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, ser. Proceedings of Machine Learning
Research, J. G. Dy and A. Krause, Eds., vol. 80. PMLR, 2018,
pp. 2415–2424.

[6] J. Valin and J. Skoglund, “LPCNET: improving neural speech
synthesis through linear prediction,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing, ICASSP
2019, Brighton, United Kingdom, May 12-17, 2019. IEEE, 2019,
pp. 5891–5895.

[7] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based
generative network for speech synthesis,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP
2019, Brighton, United Kingdom, May 12-17, 2019. IEEE, 2019,
pp. 3617–3621.

[8] K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z. Teoh,
J. Sotelo, A. de Brébisson, Y. Bengio, and A. C. Courville, “Mel-
gan: Generative adversarial networks for conditional waveform
synthesis,” in Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, H. M. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 14 881–
14 892.

[9] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversar-
ial networks for efficient and high fidelity speech synthesis,” in
Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020.

[10] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Dif-
fwave: A versatile diffusion model for audio synthesis,” in 9th In-
ternational Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021.

[11] N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi, and W. Chan,
“Wavegrad: Estimating gradients for waveform generation,” in In-
ternational Conference on Learning Representations.

[12] P. L. Tobing and T. Toda, “High-fidelity and low-latency univer-
sal neural vocoder based on multiband wavernn with data-driven
linear prediction for discrete waveform modeling,” in Interspeech
2021, 22nd Annual Conference of the International Speech Com-
munication Association, Brno, Czechia, 30 August - 3 Septem-
ber 2021, H. Hermansky, H. Cernocký, L. Burget, L. Lamel,
O. Scharenborg, and P. Motlı́cek, Eds. ISCA, 2021, pp. 2217–
2221.

[13] Q. Tian, Z. Zhang, H. Lu, L. Chen, and S. Liu, “Featherwave:
An efficient high-fidelity neural vocoder with multi-band linear
prediction,” in Interspeech 2020, 21st Annual Conference of the
International Speech Communication Association, Virtual Event,
Shanghai, China, 25-29 October 2020, H. Meng, B. Xu, and T. F.
Zheng, Eds. ISCA, 2020, pp. 195–199.

[14] H. Kanagawa and Y. Ijima, “Multi-sample subband wavernn
via multivariate gaussian,” in ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2022, pp. 8427–8431.

[15] S. Narang, G. Diamos, S. Sengupta, and E. Elsen, “Exploring
sparsity in recurrent neural networks,” in 5th International Con-
ference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.

[16] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste,
“Sparsity in deep learning: Pruning and growth for efficient in-
ference and training in neural networks,” J. Mach. Learn. Res.,
vol. 22, pp. 241:1–241:124, 2021.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016. IEEE Computer Society, 2016, pp. 770–778.

[18] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On
the properties of neural machine translation: Encoder–decoder ap-
proaches,” in Proceedings of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation. Doha, Qatar:
Association for Computational Linguistics, 2014, pp. 103–111.

[19] S. Haykin and M. Moher, Introduction to analog and digital com-
munications. Wiley, 2007.

[20] T. Q. Nguyen, “Near-perfect-reconstruction pseudo-qmf banks,”
IEEE Transactions on signal processing, vol. 42, no. 1, pp. 65–
76, 1994.

[21] P. E. Black, “Manhattan distance”” dictionary of algorithms and
data structures,” http://xlinux. nist. gov/dads//, 2006.

[22] K. Ito and L. Johnson, “The lj speech dataset,” 2017.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic op-
timization,” in 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

[24] J. Zhang, T. He, S. Sra, and A. Jadbabaie, “Why gradient clipping
accelerates training: A theoretical justification for adaptivity,” in
8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020.

[25] I.-T. Recommendation, “Perceptual evaluation of speech quality
(pesq): An objective method for end-to-end speech quality as-
sessment of narrow-band telephone networks and speech codecs,”
Rec. ITU-T P. 862, 2001.

[26] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “A short-
time objective intelligibility measure for time-frequency weighted
noisy speech,” in 2010 IEEE international conference on acous-
tics, speech and signal processing. IEEE, 2010, pp. 4214–4217.

4348

